Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(5): 162, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613584

RESUMO

Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.


Assuntos
Inoculantes Agrícolas , Praguicidas , Trichoderma , Humanos , Fertilizantes , Solo
2.
Comput Struct Biotechnol J ; 21: 1860-1873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915379

RESUMO

Integrated disease management and plant protection have been discussed with much fervor in the past decade due to the rising environmental concerns of using industrially produced pesticides. Members of the genus Trichoderma are a subject of considerable research today due to their several properties as biocontrol agents. In our study, the peptaibol production of Trichoderma longibrachiatum SZMC 1775, T. longibrachiatum f. bissettii SZMC 12546, T. reesei SZMC 22616, T. reesei SZMC 22614, T. saturnisporum SZMC 22606 and T. effusum SZMC 22611 were investigated to elucidate structure-activity relationships (SARs) between the properties of peptaibols and their 3D structures. The effects of peptaibol mixtures obtained from every Trichoderma strain were examined against nine commonly known bacteria. The lowest minimum inhibitory concentrations (MIC, mg ml-1) were exerted by T. longibrachiatum f. bissettii SZMC 12546 against Gram-positive bacteria, which was also able to inhibit the plant pathogenic Gram-negative Rhizobium radiobacter. Accelerated molecular dynamics (aMD) simulations were performed in aqueous solvent to explore the folding dynamics of 12 selected peptaibol sequences. The most characteristic difference between the peptaibols from group A and B relies in the 'Gly-Leu-Aib-Pro' and 'Gly-Aib-Aib-Pro' motifs ('Aib' stands for α-aminoisobutyric acid), which imparted a significant effect on the folding dynamics in water and might be correlated with their expressed bioactivity. In our aMD simulation experiments, Group A peptaibols showed more restricted folding dynamics with well-folded helical conformations as the most stable representative structures. This structural stability and dynamics may contribute to their bioactivity against the selected bacterial species.

4.
Biomolecules ; 10(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392805

RESUMO

Trichoderma species are widely used as biofungicides for the control of fungal plant pathogens. Several studies have been performed to identify the main genes and compounds involved in Trichoderma-plant-microbial pathogen cross-talks. However, there is not much information about the exact mechanism of this profitable interaction. Peptaibols secreted mainly by Trichoderma species are linear, 5-20 amino acid residue long, non-ribosomally synthesized peptides rich in α-amino isobutyric acid, which seem to be effective in Trichoderma-plant pathogenic fungus interactions. In the present study, reversed phase (RP) high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) mass spectrometry (MS) was used to detect peptaibol profiles of Trichoderma strains during interactions with fungal plant pathogens. MS investigations of the crude extracts deriving from in vitro confrontations of Trichodermaasperellum and T.longibrachiatum with different plant pathogenic fungi (Fusariummoniliforme, F.culmorum, F.graminearum, F.oxysporum species complex, Alternariasolani and Rhizoctoniasolani) were performed to get a better insight into the role of these non-ribosomal antimicrobial peptides. The results revealed an increase in the total amount of peptaibols produced during the interactions, as well as some differences in the peptaibol profiles between the confrontational and control tests. Detection of the expression level of the peptaibol synthetase tex1 by qRT-PCR showed a significant increase in T.asperellum/R.solani interaction in comparison to the control. In conclusion, the interaction with plant pathogens highly influenced the peptaibol production of the examined Trichoderma strains.


Assuntos
Antibiose , Peptaibols/metabolismo , Trichoderma/metabolismo , Alternaria/efeitos dos fármacos , Alternaria/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/fisiologia , Peptaibols/química , Peptaibols/toxicidade , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/fisiologia , Trichoderma/fisiologia
5.
Front Microbiol ; 10: 1434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293557

RESUMO

This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma, which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade (T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T. parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis, and T. orientale) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T. reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml-1 deterred the growth of A. thaliana. However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1, which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA